Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gram-positive bacteria are some of the earliest known life forms, diverging from gram-negative bacteria 2 billion years ago. These organisms utilize sortase enzymes to attach proteins to their peptidoglycan cell wall, a structural feature that distinguishes the two types of bacteria. The transpeptidase activity of sortases make them an important tool in protein engineering applications, e.g., in sortase-mediated ligations or sortagging. However, due to relatively low catalytic efficiency, there are ongoing efforts to create better sortase variants for these uses. Here, we use bioinformatics tools, principal component analysis and ancestral sequence reconstruction, in combination with protein biochemistry, to analyze natural sequence variation in these enzymes. Principal component analysis on the sortase superfamily distinguishes previously described classes and identifies regions of relatively high sequence variation in structurally-conserved loops within each sortase family, including those near the active site. Using ancestral sequence reconstruction, we determined sequences of ancestral Staphylococcus and Streptococcus Class A sortase proteins. Enzyme assays revealed that the ancestral Streptococcus enzyme is relatively active and shares similar sequence variation with other Class A Streptococcus sortases. Taken together, we highlight how natural sequence variation can be utilized to investigate this important protein family, arguing that these and similar techniques may be used to discover or design sortases with increased catalytic efficiency and/or selectivity for sortase-mediated ligation experiments.more » « less
-
Abstract Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developedMotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, theMonsiga brevicollisSHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall,MotifAnalyzer‐PDZis a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g.,MotifAnalyzer‐Kinase).MotifAnalyzer‐PDZis available athttp://motifAnalyzerPDZ.cs.wwu.edu.more » « less
An official website of the United States government
